If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-8y-15=0
a = 3; b = -8; c = -15;
Δ = b2-4ac
Δ = -82-4·3·(-15)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{61}}{2*3}=\frac{8-2\sqrt{61}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{61}}{2*3}=\frac{8+2\sqrt{61}}{6} $
| 7x+12=7x+9 | | 1/2t8=1 | | (x^2+112)+(16x+131)=0 | | 2y^2-15-5y=y2-3y | | 3^4x=31 | | (x^2+112)=(16x+131)+0 | | 9-2n=8 | | ((9t+1)/8)=((t+6)/16)+((t-4)/16) | | 7(x-2=5(x+4) | | 8•x+10+2x+4•x+8-6=2(7x+18) | | 19m-13m-3=-15 | | ((3x+15)/7)+((x+14)/4)=7 | | 7(x-2=5x | | 4.6+1.9n=0.04 | | 1+3n+4=-10 | | 34r=3.14 | | Y=1.9x+56 | | ((x-9)/5)+(9/5)=-(x/7) | | 8(3x-5)=17+2(x+9) | | 2(2y-7)-3y=0 | | 4c-c=10 | | -14=-2x+8 | | 2x^2-6x+9=369 | | X-a=7 | | p/3+2=7 | | P=9/4-r | | 6y-3y-1=20 | | Y=5y-33 | | -(7x-(3x+5))=-4-(3(3x-4)-3x) | | 9d-6d=15 | | 4x^2-6x+9=369 | | 9x^2+24x-9= |